<table>
<thead>
<tr>
<th>Unit #</th>
<th>Topic</th>
<th>Demonstration Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro1</td>
<td>Introductory demonstration 1</td>
<td>Fire Writing</td>
</tr>
<tr>
<td>Intro2</td>
<td>Introductory demonstration 2</td>
<td>Invisible Ink Message</td>
</tr>
<tr>
<td>Intro3</td>
<td>Introductory demonstration 3</td>
<td>Pop Bottle Cannon</td>
</tr>
<tr>
<td>I.1</td>
<td>The need for safety goggles</td>
<td>A Simulated “Acid in Your Eye” Accident</td>
</tr>
<tr>
<td>I.2</td>
<td>Working with dangerous chemicals</td>
<td>Why Worry About Safety? Ira Remsen’s 1st Experiment</td>
</tr>
<tr>
<td>I.3</td>
<td>The need for clean work benches</td>
<td>Indicator Sponge</td>
</tr>
<tr>
<td>II.1</td>
<td>Density of water vs alcohol</td>
<td>U–Tube With Unequal Arms</td>
</tr>
<tr>
<td>II.2</td>
<td>Density of ice vs water or alcohol</td>
<td>The Mysterious Sunken Ice Cube</td>
</tr>
<tr>
<td>II.3</td>
<td>Golf ball in a density gradient</td>
<td>A Densi–Tee</td>
</tr>
<tr>
<td>II.4</td>
<td>Accuracy vs precision</td>
<td>Inaccurate Meter Stick</td>
</tr>
<tr>
<td>II.5</td>
<td>Different meniscus curves</td>
<td>What’s A Meniscus?</td>
</tr>
<tr>
<td>II.6</td>
<td>Experimental uncertainty</td>
<td>Consistency</td>
</tr>
<tr>
<td>III.1</td>
<td>Hypothesizing</td>
<td>Think Tube</td>
</tr>
<tr>
<td>III.2</td>
<td>Density of a vapour</td>
<td>Flaming Vapour Ramp</td>
</tr>
<tr>
<td>III.3</td>
<td>Physical properties</td>
<td>Slime: Cross–Linked Glue</td>
</tr>
<tr>
<td>III.4</td>
<td>VP of acetone and n–butanol</td>
<td>The Vapour Pressure of Acetone and n–Butanol</td>
</tr>
<tr>
<td>III.5</td>
<td>Temperature and vapour pressure</td>
<td>The Effect of Temperature on Vapour Pressure</td>
</tr>
<tr>
<td>III.6</td>
<td>Density vs. viscosity</td>
<td>Density Versus Viscosity</td>
</tr>
<tr>
<td>III.7</td>
<td>Gas diffusion 1</td>
<td>Diffusion of Ammonia and Hydrogen Chloride</td>
</tr>
<tr>
<td>III.8</td>
<td>Gas diffusion 2</td>
<td>Producing Two Gases from Ammonium Chloride</td>
</tr>
<tr>
<td>III.9</td>
<td>Temperature versus diffusion rate</td>
<td>Effect of Temperature on Diffusion Rate</td>
</tr>
<tr>
<td>III.10</td>
<td>Relationship between P and V</td>
<td>Expansion of Shaving Cream In A Vacuum</td>
</tr>
<tr>
<td>III.11</td>
<td>Solutions, colloids and suspensions</td>
<td>Solutions, Colloids and Suspensions</td>
</tr>
<tr>
<td>III.12</td>
<td>Elements, mixtures & compounds</td>
<td>Elements, Mixtures and Compounds</td>
</tr>
<tr>
<td>III.13</td>
<td>Physical Separation Methods</td>
<td>Odour and Colour Eater</td>
</tr>
<tr>
<td>III.14</td>
<td>Immiscibility</td>
<td>Immiscible Liquids in Hero’s Fountain</td>
</tr>
<tr>
<td>III.15</td>
<td>Distillation</td>
<td>Closed System Distillation Apparatus</td>
</tr>
<tr>
<td>III.16</td>
<td>Solvent Extraction</td>
<td>A Simple Separation of Cobalt and Nickel Salts</td>
</tr>
<tr>
<td>III.17</td>
<td>Chromatography</td>
<td>Radial Chromatography</td>
</tr>
<tr>
<td>III.18</td>
<td>Sublimation of benzoic acid</td>
<td>Hoarfrost in a Glass</td>
</tr>
<tr>
<td>III.19</td>
<td>Kinetic energy types</td>
<td>Types of Kinetic Energy</td>
</tr>
<tr>
<td>Unit #</td>
<td>Topic</td>
<td>Demonstration Title</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td>IV.1</td>
<td>Anhydrous copper sulphate</td>
<td>Dehydrating Action of Sulphuric Acid: a Twist</td>
</tr>
<tr>
<td>IV.2</td>
<td>Colours of ions</td>
<td>A Chemical Garden</td>
</tr>
<tr>
<td>V.1</td>
<td>Law of multiple proportions</td>
<td>Synthesis of Mercury(I) iodide and Mercury(II) iodide</td>
</tr>
<tr>
<td>V.2</td>
<td>Avogadro’s Hypothesis</td>
<td>Equal Volumes of Gases Have Different Masses</td>
</tr>
<tr>
<td>V.3</td>
<td>Molar mass</td>
<td>Molar Mass Samples</td>
</tr>
<tr>
<td>V.4</td>
<td>Molar mass of air vs CO₂</td>
<td>Misty Smoke Rings</td>
</tr>
<tr>
<td>V.5</td>
<td>Molar volume of CO₂</td>
<td>A “Mole” of CO₂</td>
</tr>
<tr>
<td>V.6</td>
<td>Molarity</td>
<td>Solutions of Moles</td>
</tr>
<tr>
<td>V.7</td>
<td>Parts per million</td>
<td>It’s Only One Part Per Million</td>
</tr>
<tr>
<td>VI.1</td>
<td>Volumes are not conserved</td>
<td>Nonadditivity of Volumes: 1 + 1 < 2</td>
</tr>
<tr>
<td>VI.2</td>
<td>Synthesis reaction 1</td>
<td>The Aluminum–Iodine Reaction</td>
</tr>
<tr>
<td>VI.3</td>
<td>Synthesis reaction 2</td>
<td>The Glowing Test Tube</td>
</tr>
<tr>
<td>VI.4</td>
<td>Decomposition reaction</td>
<td>Dehydration of Sucrose</td>
</tr>
<tr>
<td>VI.5</td>
<td>Metal ion single replacement</td>
<td>Reaction Between Silver Nitrate and Copper</td>
</tr>
<tr>
<td>VI.6</td>
<td>Halogen ion single replacement</td>
<td>Single Replacement of Halogens</td>
</tr>
<tr>
<td>VI.7</td>
<td>Double replacement</td>
<td>Reaction Between Silver Nitrate and Sodium Chloride</td>
</tr>
<tr>
<td>VI.8</td>
<td>Acid–base neutralization</td>
<td>Nonadditivity of Volumes: 1 + 1 > 2</td>
</tr>
<tr>
<td>VI.9</td>
<td>Combustion</td>
<td>Growling Gummy Bear</td>
</tr>
<tr>
<td>VI.10</td>
<td>Combustion of iron</td>
<td>Sparkler In Pure Oxygen</td>
</tr>
<tr>
<td>VI.11</td>
<td>Combustion requires gravity</td>
<td>Candles Need Gravity to Burn</td>
</tr>
<tr>
<td>VI.12</td>
<td>Combustion of magnesium</td>
<td>Magnesium Burns and Burns</td>
</tr>
<tr>
<td>VI.13</td>
<td>Crystallization is exothermic</td>
<td>Bond Formation is an Exothermic Process</td>
</tr>
<tr>
<td>VI.14</td>
<td>Endothermic reaction</td>
<td>Chemical Cold Pack — An Endothermic Process</td>
</tr>
<tr>
<td>VI.15</td>
<td>Evaporation is endothermic</td>
<td>Evaporation — An Endothermic Process</td>
</tr>
<tr>
<td>VI.16</td>
<td>Exothermic reaction</td>
<td>Exothermic Reaction</td>
</tr>
<tr>
<td>VII.1</td>
<td>Stoichiometry of hydrogen production</td>
<td>Pennies New and Old</td>
</tr>
<tr>
<td>VII.2</td>
<td>Limiting quantities</td>
<td>Limiting Quantities</td>
</tr>
<tr>
<td>Unit #</td>
<td>Topic</td>
<td>Demonstration Title</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>VIII.1</td>
<td>Isotope of Hydrogen</td>
<td>Calculating the Molar Mass of the Isotope Deuterium</td>
</tr>
<tr>
<td>VIII.2</td>
<td>Emission spectrum of neon</td>
<td>Neon Light</td>
</tr>
<tr>
<td>VIII.3</td>
<td>Plasma sphere</td>
<td>Plasma Tubes and Spheres</td>
</tr>
<tr>
<td>VIII.4</td>
<td>Absorption spectra of solutions</td>
<td>Absorption Spectra On The Overhead Projector</td>
</tr>
<tr>
<td>VIII.5</td>
<td>Trends in atomic properties</td>
<td>Electronegativity, Atomic Diameter, Melting</td>
</tr>
<tr>
<td>VIII.6</td>
<td>Reactions between halogens</td>
<td>Periodicity of Chlorine</td>
</tr>
<tr>
<td>IX.1</td>
<td>Reactions in solid vs. aqueous state</td>
<td>Ions Need to Get Together</td>
</tr>
<tr>
<td>IX.2</td>
<td>Solubility</td>
<td>Glass is Soluble in Water</td>
</tr>
<tr>
<td>IX.3</td>
<td>Saturated solutions</td>
<td>Multiply–Saturated Solution</td>
</tr>
<tr>
<td>IX.4</td>
<td>Supersaturated solution</td>
<td>Supersaturated Solution</td>
</tr>
<tr>
<td>IX.5</td>
<td>Conduction in ionic solutions</td>
<td>Ionic Crescendo</td>
</tr>
<tr>
<td>IX.6</td>
<td>Solid ionic solutions don’t conduct</td>
<td>Do Frozen Solutions Conduct Electricity?</td>
</tr>
<tr>
<td>IX.7</td>
<td>Hydrogen bonding 1</td>
<td>Hydrogen Bonding</td>
</tr>
<tr>
<td>IX.8</td>
<td>Hydrogen bonding 2</td>
<td>The Uphill Bubble</td>
</tr>
<tr>
<td>IX.9</td>
<td>Hydrogen bonding 3</td>
<td>The Methane Mamba</td>
</tr>
<tr>
<td>IX.10</td>
<td>Polar / nonpolar liquids 1</td>
<td>Polar / Nonpolar Liquids</td>
</tr>
<tr>
<td>IX.11</td>
<td>Immiscible liquids</td>
<td>Immiscible Liquids</td>
</tr>
<tr>
<td>IX.12</td>
<td>Immiscibility</td>
<td>Salting Out — Making liquids Immiscible</td>
</tr>
<tr>
<td>IX.13</td>
<td>Like dissolves like</td>
<td>How To Dissolve Polystyrene Foam</td>
</tr>
<tr>
<td>IX.14</td>
<td>Polar / nonpolar liquids 2</td>
<td>Polar / Nonpolar Disks</td>
</tr>
<tr>
<td>X.1</td>
<td>Hydrocarbon polymer</td>
<td>Latex Polymer</td>
</tr>
<tr>
<td>X.2</td>
<td>Alkyl halides</td>
<td>Teflon Tape</td>
</tr>
<tr>
<td>X.3</td>
<td>Reactions of double bonds</td>
<td>Double Bonding</td>
</tr>
<tr>
<td>X.4</td>
<td>Chlorination of acetylene</td>
<td>Underwater Fireworks</td>
</tr>
<tr>
<td>X.5</td>
<td>“Polyamide” polymers</td>
<td>Nylon Formation</td>
</tr>
<tr>
<td>X.6</td>
<td>Developing fingerprints with ninhydrin</td>
<td>Fingerprint Detective</td>
</tr>
<tr>
<td>X.7</td>
<td>Ester formation</td>
<td>Esters As Natural Perfumes</td>
</tr>
</tbody>
</table>
CHEMISTRY 12 DEMONSTRATIONS

<table>
<thead>
<tr>
<th>Unit #</th>
<th>Topic</th>
<th>Demonstration Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1</td>
<td>Measuring reaction rates</td>
<td>Reacting an Alka Seltzer Tablet</td>
</tr>
<tr>
<td>I.2</td>
<td>Effect of concentration on reaction rate</td>
<td>An Egg–Splosive Demonstration</td>
</tr>
<tr>
<td>I.3</td>
<td>Nature of reactants</td>
<td>The Effect of “The Nature of the Reactants”</td>
</tr>
<tr>
<td>I.4</td>
<td>Effect of surface area on reaction rate</td>
<td>Lycopodium exploder</td>
</tr>
<tr>
<td>I.5</td>
<td>Effect of surface area on reaction rate 2</td>
<td>Starch Explosion</td>
</tr>
<tr>
<td>I.6</td>
<td>Reaction rate between solids</td>
<td>Metathesis Reaction Between Two Solids</td>
</tr>
<tr>
<td>I.7</td>
<td>Catalysis 1</td>
<td>Decomposition of Hydrogen Peroxide by MnO₂</td>
</tr>
<tr>
<td>I.8</td>
<td>Catalysis 2</td>
<td>Hydrogen Gas Production — A Catalyzing Experience</td>
</tr>
<tr>
<td>I.9</td>
<td>Catalysis 3</td>
<td>An Oscillating Platinum Wire</td>
</tr>
<tr>
<td>I.10</td>
<td>Catalysis 4</td>
<td>Catalytic Oxidation of Acetone</td>
</tr>
<tr>
<td>I.11</td>
<td>Autocatalysis</td>
<td>Autocatalysis</td>
</tr>
<tr>
<td>I.12</td>
<td>Reaction inhibitor</td>
<td>Inhibition of Hydrogen Peroxide</td>
</tr>
<tr>
<td>I.13</td>
<td>Exothermic reaction</td>
<td>Chemiluminescence — The Firefly Reaction</td>
</tr>
<tr>
<td>I.14</td>
<td>Activation energy</td>
<td>Racquet Ball</td>
</tr>
<tr>
<td>I.15</td>
<td>Activated complex</td>
<td>Activated Complex</td>
</tr>
<tr>
<td>I.16</td>
<td>Rate analogy</td>
<td>The Rate of Funnels</td>
</tr>
<tr>
<td>I.17</td>
<td>Effect of catalyst on reaction</td>
<td>Thorium Oxide as a Catalyst</td>
</tr>
<tr>
<td>I.18</td>
<td>Doubling the reaction rate</td>
<td>The Chemist’s “Rule of Thumb”</td>
</tr>
<tr>
<td>II.1</td>
<td>Equilibrium analogy</td>
<td>Equilibrium Is Not Fair</td>
</tr>
<tr>
<td>II.2</td>
<td>Spontaneous movement of gases 1</td>
<td>The Automatic Water Fountain: Helium Effusion</td>
</tr>
<tr>
<td>II.3</td>
<td>Spontaneous movement of gases 2</td>
<td>Shrinking Suds</td>
</tr>
<tr>
<td>II.4</td>
<td>Entropy–driven reaction</td>
<td>Endothermic Rx Between Ba(OH)₂•8H₂O and NH₄SCN</td>
</tr>
<tr>
<td>II.5</td>
<td>Le Chatelier's Principle 1</td>
<td>Equilibrium on an Overhead</td>
</tr>
<tr>
<td>II.6</td>
<td>Le Chatelier's Principle 2</td>
<td>The Effect of Pressure Changes on an Equilibrium I</td>
</tr>
<tr>
<td>II.7</td>
<td>Le Chatelier's Principle 3</td>
<td>The Effect of Pressure Changes on an Equilibrium II</td>
</tr>
<tr>
<td>II.8</td>
<td>Effect of temperature on gas solubility</td>
<td>Gases Have It Backwards</td>
</tr>
<tr>
<td>II.9</td>
<td>The Haber and Ostwald reactions</td>
<td>Ostwald Oxidation of Ammonia</td>
</tr>
<tr>
<td>III.1</td>
<td>Crystallization reactions</td>
<td>A Golden Rain of Lead (II) Iodide Crystals</td>
</tr>
<tr>
<td>III.2</td>
<td>Solubility diagrams</td>
<td>Fractional Crystallization</td>
</tr>
<tr>
<td>III.3</td>
<td>Solubility exception 1</td>
<td>Solubility of Calcium Acetate</td>
</tr>
<tr>
<td>III.4</td>
<td>Solubility exception 2</td>
<td>The Effect of Temperature on Solubility</td>
</tr>
<tr>
<td>III.5</td>
<td>Precipitation equations</td>
<td>Name that Precipitate</td>
</tr>
<tr>
<td>III.6</td>
<td>Will a precipitate form?</td>
<td>Solubility Product Constant, Kₚₛ</td>
</tr>
<tr>
<td>Unit #</td>
<td>Topic</td>
<td>Demonstration Title</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td>III.7</td>
<td>Water hardness</td>
<td>Concentration Dependence of a Reaction</td>
</tr>
<tr>
<td>III.8</td>
<td>Common ion effect 1</td>
<td>Common Ion Effect</td>
</tr>
<tr>
<td>III.9</td>
<td>Common ion effect 2</td>
<td>Common Ion Effect Revisited</td>
</tr>
<tr>
<td>IV.1</td>
<td>Amphiprotic ions</td>
<td>The Amphiprotic Behaviour of Al(OH)$_3$</td>
</tr>
<tr>
<td>IV.2</td>
<td>Strong vs weak acids</td>
<td>Relative Acid Strength</td>
</tr>
<tr>
<td>IV.3</td>
<td>Weak acids and bases 1</td>
<td>Conductivity of a Mixture of NH$_3$ and CH$_3$COOH</td>
</tr>
<tr>
<td>IV.4</td>
<td>Weak acids and bases 2</td>
<td>Etching Glass with HF</td>
</tr>
<tr>
<td>IV.5</td>
<td>Effect of temperature on K_b</td>
<td>Effect of temperature on the NH$_3$ / NH$_4^+$ equilibrium</td>
</tr>
<tr>
<td>IV.6</td>
<td>The pH scale</td>
<td>pH Rainbow Tube</td>
</tr>
<tr>
<td>IV.7</td>
<td>Hydrolysis</td>
<td>Acidic and Basic Salts</td>
</tr>
<tr>
<td>IV.8</td>
<td>Acidity of CO$_2$(aq)</td>
<td>Preparation And Properties Of Carbon Dioxide</td>
</tr>
<tr>
<td>IV.9</td>
<td>Acid-base titrations</td>
<td>Titration of Ba(OH)$_2$ with H$_2$SO$_4$</td>
</tr>
<tr>
<td>IV.10</td>
<td>Indicators 1</td>
<td>Goldenrod Messages</td>
</tr>
<tr>
<td>IV.11</td>
<td>Indicators 2</td>
<td>Indicator Boxes</td>
</tr>
<tr>
<td>IV.12</td>
<td>Indicators 3</td>
<td>Indicator Colour Changes</td>
</tr>
<tr>
<td>IV.13</td>
<td>Indicators 4</td>
<td>Producing An Acid–Base Indicator Paper</td>
</tr>
<tr>
<td>IV.14</td>
<td>Buffers 1</td>
<td>Diluting a Buffer Has No Effect on its pH</td>
</tr>
<tr>
<td>IV.15</td>
<td>Buffers 2</td>
<td>Common Ion Effect II</td>
</tr>
<tr>
<td>IV.16</td>
<td>Buffers 3</td>
<td>K_b Balance Revisited</td>
</tr>
<tr>
<td>IV.17</td>
<td>Buffers in biological systems</td>
<td>The Effect of a Change in [CO$_2$] on Blood pH</td>
</tr>
<tr>
<td>IV.18</td>
<td>Basic anhydride</td>
<td>Basic Anhydride</td>
</tr>
<tr>
<td>IV.19</td>
<td>Acid rain 1</td>
<td>Acid Rain</td>
</tr>
<tr>
<td>IV.20</td>
<td>Acid rain 2</td>
<td>Instant Smog</td>
</tr>
<tr>
<td>V.1</td>
<td>Redox reactions</td>
<td>The Silver Nitrate / Copper Reaction Revisited</td>
</tr>
<tr>
<td>V.2</td>
<td>Reduced iron</td>
<td>Reduced Iron in Cereal</td>
</tr>
<tr>
<td>V.3</td>
<td>Oxidation numbers</td>
<td>The Many Colours of Vanadium</td>
</tr>
<tr>
<td>V.4</td>
<td>Applied Electrochemistry</td>
<td>The Breathalyser</td>
</tr>
<tr>
<td>V.5</td>
<td>Corrosion</td>
<td>How to Turn Aluminum into Hoarfrost</td>
</tr>
<tr>
<td>V.6</td>
<td>Electrolysis 1</td>
<td>Electrolysis of Water</td>
</tr>
<tr>
<td>V.7</td>
<td>Electrolysis 2</td>
<td>Electrolysis of Copper(II) Chromate</td>
</tr>
<tr>
<td>V.8</td>
<td>Electrolytic vs electrochemical cells</td>
<td>Electrolytic and Electrochemical Cells</td>
</tr>
<tr>
<td>V.9</td>
<td>Electrolysis 3</td>
<td>Petri Dish Electrolysis and Liquid Motors</td>
</tr>
<tr>
<td>#</td>
<td>Topic</td>
<td>Demonstration Title</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Electrostatic attraction</td>
<td>The Electrostatic Bubble</td>
</tr>
<tr>
<td>2</td>
<td>Electrostatic repulsion</td>
<td>The Bubble Trampoline</td>
</tr>
<tr>
<td>3</td>
<td>Guncotton</td>
<td>Combustion Of Cellulose Nitrate (Guncotton)</td>
</tr>
<tr>
<td>4</td>
<td>Burning lighter fluid on water</td>
<td>Burning Water</td>
</tr>
<tr>
<td>5</td>
<td>Electrostatic attraction of water</td>
<td>Bending A Stream Of Water</td>
</tr>
<tr>
<td>6</td>
<td>Fireworks flame tests</td>
<td>Coloured H₂ Balloon Explosions</td>
</tr>
<tr>
<td>7</td>
<td>Flames in O₂ and CO₂</td>
<td>The Jumping Flame</td>
</tr>
<tr>
<td>8</td>
<td>Green boric acid flame</td>
<td>Saint Patrick’s Day Demo</td>
</tr>
<tr>
<td>9</td>
<td>Ammonia fountain balloon in a flask</td>
<td>The Balloon In The Flask — A New Approach</td>
</tr>
<tr>
<td>10</td>
<td>Vaporizing ethanol into a flame</td>
<td>Dragon’s Breath</td>
</tr>
<tr>
<td>11</td>
<td>Redissolving mercury complexes</td>
<td>Disappearing Orangeade</td>
</tr>
<tr>
<td>12</td>
<td>Reduction of silver by dextrose</td>
<td>Silver Mirror</td>
</tr>
<tr>
<td>13</td>
<td>Ammonia–hydrochloric acid smoke</td>
<td>Smoke Cannon</td>
</tr>
<tr>
<td>14</td>
<td>Rapid oxidation of zinc</td>
<td>Instant Fire</td>
</tr>
<tr>
<td>15</td>
<td>Hydrophobic powder</td>
<td>Dry Hands In Wet Water</td>
</tr>
<tr>
<td>16</td>
<td>Old Nassau clock reaction</td>
<td>The Black Witch Eats The Great Pumpkin</td>
</tr>
<tr>
<td>17</td>
<td>Sodium polyacrylate gel</td>
<td>Disappearing Water</td>
</tr>
<tr>
<td>18</td>
<td>Combustion of methane in bubbles</td>
<td>Methane Bubbles</td>
</tr>
<tr>
<td>19</td>
<td>Sublimation of CO₂ in a balloon</td>
<td>Self–Inflating Balloon</td>
</tr>
<tr>
<td>20</td>
<td>Catalytic oxidation of ammonia</td>
<td>Fireflies</td>
</tr>
<tr>
<td>21</td>
<td>Dissolving styrofoam in acetone</td>
<td>Melting Styrofoam Cup</td>
</tr>
<tr>
<td>22</td>
<td>Oscillating reaction</td>
<td>Malonic Acid and KIO₂ : Oscillating Yellow And Blue</td>
</tr>
<tr>
<td>23</td>
<td>Universal indicator</td>
<td>A Colourful Tornado</td>
</tr>
<tr>
<td>24</td>
<td>Refractive index of pyrex in baby oil</td>
<td>The Disappearing Glass Rod</td>
</tr>
<tr>
<td>25</td>
<td>Observing silver crystal growth</td>
<td>Growing Silver Crystals Under A Microscope</td>
</tr>
<tr>
<td>26</td>
<td>Polyvinyl alcohol–borax gel</td>
<td>Slime</td>
</tr>
<tr>
<td>27</td>
<td>Magnesium–orange juice battery</td>
<td>Orange Juice Clock</td>
</tr>
<tr>
<td>28</td>
<td>Oxidation of sugar–chlorate mixture</td>
<td>The Self–Lighting Candle</td>
</tr>
<tr>
<td>29</td>
<td>Simultaneous clock reactions</td>
<td>Simultaneous Multi–Coloured Clock Reactions</td>
</tr>
<tr>
<td>30</td>
<td>Reduction of H₂O₂ by KI</td>
<td>Elephant’s Toothpaste</td>
</tr>
<tr>
<td>31</td>
<td>Acetylene explosion</td>
<td>Calcium Carbide In Balloon</td>
</tr>
<tr>
<td>32</td>
<td>Density of CO₂ vs. air</td>
<td>Floating Bubbles in CO₂</td>
</tr>
<tr>
<td>33</td>
<td>Combustion of methane bubbles</td>
<td>Ripple Tank Fireball</td>
</tr>
</tbody>
</table>
General Demonstrations – 2

<table>
<thead>
<tr>
<th>#</th>
<th>Topic</th>
<th>Demonstration Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>Hydrogen–air explosion</td>
<td>Hydrogen In A Bottle</td>
</tr>
<tr>
<td>35</td>
<td>Flash paper</td>
<td>Flash paper</td>
</tr>
<tr>
<td>36</td>
<td>Explosive methane mixture</td>
<td>Paint Can Explosion</td>
</tr>
<tr>
<td>37</td>
<td>Oxidation of methylene blue</td>
<td>The Methylene Blue Traffic Light</td>
</tr>
<tr>
<td>38</td>
<td>Fluorescence of quinine</td>
<td>Glowing Tonic Water</td>
</tr>
<tr>
<td>39</td>
<td>Hydrophobic solid</td>
<td>Magic Sand</td>
</tr>
<tr>
<td>40</td>
<td>Salt water oscillator</td>
<td>Salt Water Oscillator</td>
</tr>
</tbody>
</table>